# Box-Sphere Pattern

In this definition we will find the solid difference between a box and a series of spheres on the corners and the face centers. then we will morph the module into a Nurbs surface.

In this definition we will find the solid difference between a box and a series of spheres on the corners and the face centers. then we will morph the module into a Nurbs surface.

In this definition we will use the node points of a series of geodesic lines to find the best plane for the cylindrecal connections.

In this definition you can learn how to use the Point Polar in Grasshopper to Model the Rhodonea equations (sin((n/d)*x)). By changing the parameters you can produce different curves.

In this Grasshopper definition you can extrude and scale a series of squares based on a parametric point attractor. You can also control the height and scale by changing the graphs.

In this definition we have used the Anemone plugin to model the Apolloian fractal. In mathematics, an Apollonian gasket or Apollonian net is a fractal generated starting from a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three.

This grasshopper definition is generated by putting simple scaling and rotating into a loop through Anemone Plugin, however it is quite different from the method that mathematician generate the Hilbert Curve fractal. A Hilbert curve is a continuous fractal space-filling curve.

In this definition a set of gene pools are used to create the main surface and then data tree has been used to extract three sets of curves to create the pattern.

In this grasshopper definition we will model an Erwin Hauer pattern based on the “Still Facing Infinity” exhibition.

In this exercise you can learn how to divide a Nurbs surface into a non-linear division by using graphs.

In this definition by using a parametric helix and modeling a series of triangles on the path you can make spiral spikes. You can also change the graphs to get different results.

In this example you can model a 3d sierpinski fractal by using the recrusive behaviour of the Anemone plugin and then you can use the weaverbird plugin to smooth the results.

In this definition you can learn how to pinch or spread a mesh box with random points by using the Pufferfish Plugin + Weaverbird.

In This grasshopper definition you can learn how to model a series of random rectangles on a circle. For example this can be used to model a circular mirror.

In this grasshopper definition by using an attractor point we will model a parametric twisting surface and then use Lunchbox or Pufferfish or Weaverbird to model a series of patterns on this base surface.

In this grasshopper definition by using a surface which is created from Loft and a single variable function which is controlled by Graph Mapper, you can generate a pattern that surrounded the surface thorough the function.

In this grasshopper definition you can learn how aggregation method works by creating a loop with the Anemone plugin. In each iteration, the faces of the meshes will generate a new face.

In this grasshopper definition you can use the point attractor technique combined with Heteroptera plugin to model a wavy like surface.

In this grasshopper definition we have modeled two series of 3d patterns based on a square grid which can be controlled parametrically.

In this grasshopper definition you can model a parametric form by cutting a series of curves with a plane and then joining them with the mirrored result.

In this grasshopper example file, you can model a a parametric shape by defining a series of circles with a Perlin noise function controlling the radiuses. At the end we will use the Dendro Plugin to voxelize the final shape.

In this definition we have used agent based modeling to simulate growth of the agents and reaching the food source by using the Physarealm plugin.

In this grasshopper definition a 2d pattern panel is created using the diamond panels of the Lunch box plug-in and different variants of the diamond panel is created using basic components to control thickness and shape.

In this grasshopper definition we have used the Rabbit Plugin to produce a parametric L-System by defining rules and number of agents (Turtles). The Starting position has been found on a sphere

In this grasshopper definition you can use the Jellum force (a force which affects a grid of points) and change the strength and position to produce a deformed 3d grid and finally voxelize the curves and points to produce a 3d parametric form.

In this grasshopper definition you can use a 3d point cloud to voxelize the final parametric form by using the Dendro plugin.

In this grasshopper definition by generating a truncated cubic grid you can give volume to it by using Dendro’s plugin voxel method. We have also used the Parakeet plugin to change the form.

In this grasshopper definition you can create a simple simulation of attraction through agent base modeling and traces are captured, by using Heteroptera Plugin.

In this definition you can use the shortest walk plugin to produce a venation pattern between a series of random points.

In this grasshopper definition by dividing a square grid and extracting relative points in the grid you can generate a parametric 3d pattern panel.

In this grasshopper definition a series of basic grasshopper components has been used to create a surface on top of a network of arcs and curves.