# Panel Pattern #1

In this Grasshopper definition you can model a parametric pattern for 2d panels which is based on a circular connection.

Course Members

Only Our Course members can

download this content. **Enroll now**!

In this definition you can model a fractal based on a square which builds two smaller squares on one of its edges.

In this grasshopper definition by using the Parakeet Plugin you can model a radial scissor mechanism by defining the number of elements , width , size and also the radius of the holes which connect the elements together.

In this definition you can model a parametric 3D wall pattern based on scaling edges of a rectangle grid and also moving the center of these edges.

In this Grasshopper definition you can use the Anemone Plugin to rotate a tower around itself. First we will define the rotation and scaling factor and then we will extrude the base square to model the tower.

In this definition you can model a parametric Islamic Pattern which is based on connecting the center of Triangular grid to a point located on edges and then connect that point to their neighboring corner.

In this grasshopper definition you can make particles move through a Perlin noise effect made from Noise 4d Plugin and a loop which is generated by Anemone.

In this Paracourse Lesson we are going to remodel the filzfelt scale wall panels in grasshopper and make them parametric.

In this Paracourse Lesson we are going to model a complete 3d Truchet tiles based on pipes. First we are going to explain the logic behind the pattern and then we will model it from scratch.

In this grasshopper definition by extracting points from a curve and using the Curve CNR component you can create a chain of circles on a defined curve.

In this grasshopper definition you can generate a parametric surface with different truchet patterns. By using Jitter to change the index of the Twisted boxes you can model different patterns

In this Paracourse Lesson we are going to model a parametric facade made by random triangles. First we will model the basics and then we will extract the windows and the frames and orient them on the ground for the final step.

In this grasshopper definition by offsetting and scaling one of the Parakeet's Tiling components (patterns) you can create different patterns. this grasshopper definition uses Parakeet and Weaverbird plugins.

In this grasshopper definition by creating relative tangent spheres which revolve around each other you can create different spirograph patterns in 3d space you can also use Dendro plugin to convert these complex curve to volume.

In this definition we have remodeled the Rising Chair by Robert van Embricqs in Grasshopper3d. First we have made a rectangle and then by two parametric curves the bending of the parts will be defined.

In this definition you can make a simple Waffle bookshelf without using any plugins, First, the 3d boxes are modeled based on thickness and depth and then the details are modeled in several steps.

In this definition we will use Perlin noise as the base deformation of a sphere. Perlin noise is a type of gradient noise developed by Ken Perlin in 1983.

In this definition we will use some geometrical transformations to model a 3d wall panel. First we will model the rectangles and then we will turn them in to 3d.

In this definition you can learn how to optimize a bounding box of a solid by using Galapagos and by rotating it around the x,y,z axis. Finally you can use a few simple commands to visualize some of the Data in the rhino viewport.

In this definition we have used the Mesh+ Thatch weave command to produce a parametric weave pattern on an untrimmed Nurbs surface.

In this definition we have made a pattern based on a rotating and scaling square grid which the center connects to the middle of the edges and then by following a geometrical algorithm we reach the final pattern.

In this definition we will use the node points of a series of geodesic lines to find the best plane for the cylindrecal connections.

In this definition we have used the Anemone plugin to model the Apolloian fractal. In mathematics, an Apollonian gasket or Apollonian net is a fractal generated starting from a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three.

This grasshopper definition is generated by putting simple scaling and rotating into a loop through Anemone Plugin, however it is quite different from the method that mathematician generate the Hilbert Curve fractal. A Hilbert curve is a continuous fractal space-filling curve.

## Comments