## Latest Scripts

In this definition we have remodeled the Rising Chair by Robert van Embricqs in Grasshopper3d. First we have made a rectangle and then by two parametric curves the bending of the parts will be defined.

In this definition you can make a simple Waffle bookshelf without using any plugins, First, the 3d boxes are modeled based on thickness and depth and then the details are modeled in several steps.

In this definition we will use Perlin noise as the base deformation of a sphere. Perlin noise is a type of gradient noise developed by Ken Perlin in 1983.

In this definition we will use some geometrical transformations to model a 3d wall panel. First we will model the rectangles and then we will turn them in to 3d.

In this definition you can learn how to optimize a bounding box of a solid by using Galapagos and by rotating it around the x,y,z axis. Finally you can use a few simple commands to visualize some of the Data in the rhino viewport.

In this definition we have used the Mesh+ Thatch weave command to produce a parametric weave pattern on an untrimmed Nurbs surface.

In this definition we have made a pattern based on a rotating and scaling square grid which the center connects to the middle of the edges and then by following a geometrical algorithm we reach the final pattern.

In this definition we will use the node points of a series of geodesic lines to find the best plane for the cylindrecal connections.

In this definition we have used the Anemone plugin to model the Apolloian fractal. In mathematics, an Apollonian gasket or Apollonian net is a fractal generated starting from a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three.

This grasshopper definition is generated by putting simple scaling and rotating into a loop through Anemone Plugin, however it is quite different from the method that mathematician generate the Hilbert Curve fractal. A Hilbert curve is a continuous fractal space-filling curve.

In this definition a set of gene pools are used to create the main surface and then data tree has been used to extract three sets of curves to create the pattern.

In this grasshopper definition we will model an Erwin Hauer pattern based on the "Still Facing Infinity" exhibition.

In this exercise you can learn how to divide a Nurbs surface into a non-linear division by using graphs.

In This grasshopper definition you can learn how to model a series of random rectangles on a circle. For example this can be used to model a circular mirror.

In this grasshopper definition you can learn how aggregation method works by creating a loop with the Anemone plugin. In each iteration, the faces of the meshes will generate a new face.

In this grasshopper definition you can use the point attractor technique combined with Heteroptera plugin to model a wavy like surface.

In this grasshopper definition we have modeled two series of 3d patterns based on a square grid which can be controlled parametrically.

In this grasshopper definition you can model a parametric form by cutting a series of curves with a plane and then joining them with the mirrored result.

In this grasshopper definition you can model a parametric shape by defining a series of circles with a Perlin noise function controlling the radiuses. At the end we will use the Dendro Plugin to voxelize the final shape.

In this definition we have used agent based modeling to simulate growth of the agents and reaching the food source by using the Physarealm plugin.

In this grasshopper definition a 2d pattern panel is created using the diamond panels of the Lunch box plug-in and different variants of the diamond panel is created using basic components to control thickness and shape.

In this grasshopper definition we have used the Rabbit Plugin to produce a parametric L-System by defining rules and number of agents (Turtles). The Starting position has been found on a sphere

In this grasshopper definition you can use the Jellum force (a force which affects a grid of points) and change the strength and position to produce a deformed 3d grid and finally voxelize the curves and points to produce a 3d parametric form.

In this grasshopper definition you can use a 3d point cloud to voxelize the final parametric form by using the Dendro plugin.

In this grasshopper definition by generating a truncated cubic grid you can give volume to it by using Dendro's plugin voxel method. We have also used the Parakeet plugin to change the form.

In this grasshopper definition you can create a simple simulation of attraction through agent base modeling and traces are captured, by using Heteroptera Plugin.

In this definition you can use the shortest walk plugin to produce a venation pattern between a series of random points.

In this grasshopper definition by dividing a square grid and extracting relative points in the grid you can generate a parametric 3d pattern panel.

In this grasshopper definition a series of basic grasshopper components has been used to create a surface on top of a network of arcs and curves.

In this Grasshopper definition you can model a parametric pattern for 2d panels which is based on a scaling square grid with a connection to a moving point on the edges.

In this Parakeet Plugin Example you can use the Flow Path component to Generate a Fluid Flow Path on a Mesh.

In this Grasshopper definition you can model a parametric pattern for 2d panels which is based on a circular connection.

In this Grasshopper definition by using the Kangaroo's Warp & Weft component we can control different tensile forces on the mesh and then by snapping the naked edge's point to a series of circles we can control the final tensile tunnel.

In this Kangaroo example by defining a box without caps and using the Edge Lengths tool we will have a tensile structure. Simply by setting the length factor to zero and defining the right anchors we can model a minimal surface.

In this grasshopper definition you can create a Truncated hexagonal grid and then add a pattern to it. You can rotate or scale the pattern with a point attractor and then finally offset the curves.

In this Kangaroo Plugin example you can model a tensile structure with a central curve modifier. The corners of the mesh has been used as the anchors and the "On curve" component has been used to keep the surface on the curve.

In this grasshopper definition you can generate several parakeet patterns through panelized surfaces using lunchbox and parakeet plugin.

In this grasshopper definition you can make pseudo reaction diffusion using Weaverbird Plugin. This grasshopper definition is inspired by Junichiro Horikawa.

In this grasshopper definition you can aggregate a custom module (Tile) by defining junctions using Fox Plugin.

In this grasshopper definition you can generate contour of triangles which are perpendicular to base surface and height of each triangle follow's custom path (curve).

This definition creates a mesh model of all the connections between the centers of the 3D voronoi cells and the adjacent cells centers. This definition uses following plugins: Mesh Edit _Mesh Tools _Weaverbird

In this grasshopper definition you can create field which is made by grid of points and thicken them by Variable sweep in Heteroptera plugin.

In this grasshopper definition you can change size of voronoi cell by changing attractor location.

In this grasshopper definition you can generate mass of strips by defining a path (Curve) and connecting them with perpendicular lines between them. This grasshopper definition is made by Heteroptera Plugin.

In this definition you can panelize any mesh (triangular subdivision) by Weaverbird plugin and moving panels due to one of triangle's side.

In this Grasshopper definition you can venate (Network of curve among points) on any geometry by using parakeet plugin and fattener component.

In this Grasshopper Definition you can morph any geometry inside deformed cubic structure by using Pufferfish Plugin. The cubic structure is deformed by Enneper surface which is already made by Lunchbox plugin.