Beyond Design Freedom Material Modelisation within Kangeroo Physics

Design Freedom

The goal of this research by Florian Chéraud is to introduce, within the Grasshopper environment, a tensile parameter, the Young Modulus, into the Kangaroo model.

Table of Contents

Beyond Design Freedom
Providing a Set-Up For Material Modelisation within Kangeroo Physics

Florian Chéraud1
1, Ecole Nationale Supérieure d’Architecture Paris-Malaquais
1, [email protected]

Kangaroo Physics, a physical simulation engine, is amongst the most used form-finding tool with nearly 500 000 downloads. Mostly resorted to by users with moderate computation skills, it provides a simplified interface for an advanced simulation tool. It is a Particle Spring System relying on the Dynamic Relaxation method and offering a wide design space.

Thanks to the visual scripting interface provided by Grasshopper, the user has access to a fixed set of physical “goals” and unitless variables, without having to work with more complex aspects of the Kangaroo physical model. This setup induces a disconnection between the user and the physical model with its variables.

The goal of this research by Florian Chéraud is to introduce, within the Grasshopper environment, a tensile parameter, the Young Modulus, into the Kangaroo model. Thus, while preserving the design freedom of the plug-in, a better understanding of the physical behaviour modelled in Kangaroo is offered to neophytes, as well as better control of material properties.

Leave a Reply

Related Post

The Airshell Prototype

This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.

Read More »

Strained Grid Shells

In this paper by Gregory Charles Quinn, Chris J K Williams, and Christoph Gengnagel, a detailed comparison is carried out between established as well as novel erection methods for strained grid shells by means of FE simulations and a 3D-scanned scaled physical model in order to evaluate key performance criteria such as bending stresses during erection and the distance between shell nodes and their spatial target geometry.

Read More »

Gridshell Structure

In this paper by Frederic Tayeb, Olivier Baverel, Jean-François Caron, Lionel du Peloux, ductility aspects of a light-weight composite gridshell are developed.

Read More »

Active Bending

In this paper by Julian Lienhard, Holger Alpermann, Christoph Gengnagel and Jan Knippers structures that actively use bending as a self forming process are reviewed.

Read More »