Realtime Structural Design

Realtime Structural Design

The present thesis by Daniel Akesson aims to integrate structural feedback with geometric modeling. The user interfaces of conceptual design tools should be interactive and agile enough to follow the designer’s iterative workflow.

Table of Contents

Before a new structure can be built, it must be designed. This design phase is a very important step in the building process. The total cost of the structure and its structural performance are largely dependent on the structural design process. The impact of decisions on the design process is initially high and declines as the design matures. However, few computational tools are available for the conceptual design phase; thus, an opportunity exists to create such tools. In the conventional workflow, the architect uses geometric modeling tools and the engineer uses structural analysis tools in sequential steps. Parametric modeling tools represent an improvement to this workflow, as structural analysis plug-ins are available. This allows the architect or engineer to receive structural feedback at an earlier stage, but still as a sequential step to the geometric modeling.

The present thesis by Daniel Akesson aims to improve this workflow by integrating structural feedback with geometric modeling. The user interfaces of conceptual design tools should be interactive and agile enough to follow the designer’s iterative workflow. Direct manipulation involves human-computer interaction, which enables an interactive user interface. In this user interface style, users can directly manipulate on-screen objects using real-world metaphors, which engages the users with their task and encourages further explorations. This is achieved by reducing the perceptual and cognitive resources required to understand and use the interface.

New technologies have opened up the possibility of creating new design tools that make use of very direct manipulation. This possibility is further explored in this thesis through the development of two such applications. The first application makes use of multi-touch tablets. The multi-touch interface has literally closed the gap between humans and computers, enabling very direct manipulation interactions with two-dimensional user interfaces. The developed application is an interactive conceptual design tool with real-time structural feedback that allows the user to quickly input and modify structural models through the use of gestures. The second application extends these concepts and ideas into a three-dimensional user interface using an input device named the Leap Motion Controller.

Leave a Reply

Related Post

The Airshell Prototype

This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.

Read More »

Strained Grid Shells

In this paper by Gregory Charles Quinn, Chris J K Williams, and Christoph Gengnagel, a detailed comparison is carried out between established as well as novel erection methods for strained grid shells by means of FE simulations and a 3D-scanned scaled physical model in order to evaluate key performance criteria such as bending stresses during erection and the distance between shell nodes and their spatial target geometry.

Read More »

Gridshell Structure

In this paper by Frederic Tayeb, Olivier Baverel, Jean-François Caron, Lionel du Peloux, ductility aspects of a light-weight composite gridshell are developed.

Read More »

Active Bending

In this paper by Julian Lienhard, Holger Alpermann, Christoph Gengnagel and Jan Knippers structures that actively use bending as a self forming process are reviewed.

Read More »