Kirigami Tessellations

Kirigami Tessellations

In this article authors pose and solve the inverse problem of determining the number, size and orientation of cuts that enables the deployment of a closed, compact regular kirigami tessellation to conform approximately to any prescribed target shape in two or three dimensions.

Table of Contents

Kirigami tessellations, regular planar patterns formed by partially cutting flat, thin sheets, allow compact shapes to morph into open structures with rich geometries and unusual material properties. However, geometric and topological constraints make the design of such structures challenging. In this article by Gary P. T. Choi, Levi H. Dudte & L. Mahadevan, authors pose and solve the inverse problem of determining the number, size and orientation of cuts that enables the deployment of a closed, compact regular kirigami tessellation to conform approximately to any prescribed target shape in two or three dimensions. They first identify the constraints on the lengths and angles of generalized kirigami tessellations that guarantee that their reconfigured face geometries can be contracted from a non-trivial deployed shape to a compact, non-overlapping planar cut pattern.

They then encode these conditions into a flexible constrained optimization framework to obtain generalized kirigami patterns derived from various periodic tesselations of the plane that can be deployed into a wide variety of prescribed shapes. A simple mechanical analysis of the resulting structure allows to determine and control the stability of the deployed state and control the deployment path. Finally, they fabricate physical models that deploy in two and three dimensions to validate this inverse design approach. Altogether, this approach, combining geometry, topology and optimization, highlights the potential for generalized kirigami tessellations as building blocks for shape-morphing mechanical metamaterials.

Leave a Reply

Related Post

The Airshell Prototype

This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.

Read More »

Strained Grid Shells

In this paper by Gregory Charles Quinn, Chris J K Williams, and Christoph Gengnagel, a detailed comparison is carried out between established as well as novel erection methods for strained grid shells by means of FE simulations and a 3D-scanned scaled physical model in order to evaluate key performance criteria such as bending stresses during erection and the distance between shell nodes and their spatial target geometry.

Read More »

Gridshell Structure

In this paper by Frederic Tayeb, Olivier Baverel, Jean-François Caron, Lionel du Peloux, ductility aspects of a light-weight composite gridshell are developed.

Read More »

Active Bending

In this paper by Julian Lienhard, Holger Alpermann, Christoph Gengnagel and Jan Knippers structures that actively use bending as a self forming process are reviewed.

Read More »