Environmentally Responsive Textiles for Architecture

Responsive Textiles

This paper by Jane Scott describes the framework behind the development of a series of knitted prototypes inspired by the biomimetic model of the hygromorph. Three moisture responsive pieces are described which use properties of wood veneer.

Table of Contents

This paper by Jane Scott describes the theoretical framework behind the development of a series of knitted prototypes inspired by the biomimetic model of the hygromorph. Three moisture responsive pieces are described which use the inherent properties of wood veneer as an actuator incorporated into complex knitted forms constructed from linen and wool. These textile/veneer assemblies are environmentally responsive, transformable and constructed from natural, sustainable materials.

This represents a new interpretation of shape changing textiles for architecture. The work illustrates the potential of designing hierarchically organised structures where functionalities are incorporated at different levels of material fabrication. The paper argues that the implementation of textile materials and processes offers the potential for the development of environmentally responsive architecture through the development of shape changing textile/veneer assemblies.

Leave a Reply

Related Post

The Airshell Prototype

This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.

Read More »

Strained Grid Shells

In this paper by Gregory Charles Quinn, Chris J K Williams, and Christoph Gengnagel, a detailed comparison is carried out between established as well as novel erection methods for strained grid shells by means of FE simulations and a 3D-scanned scaled physical model in order to evaluate key performance criteria such as bending stresses during erection and the distance between shell nodes and their spatial target geometry.

Read More »

Gridshell Structure

In this paper by Frederic Tayeb, Olivier Baverel, Jean-François Caron, Lionel du Peloux, ductility aspects of a light-weight composite gridshell are developed.

Read More »