In this grasshopper example file you can model a parametric 3d mesh by using the shortest walk plugin.

In this grasshopper example file by using the Parakeet plugin you can model a 3d Escher tiling based on a custom curve.

In this grasshopper example file, by extracting the intersection curves of a deformed surface you can create a parametric pattern.

In this grasshopper example file, you can create a wavy panel by defining series of vertical circles on a surface.

In this grasshopper example file you can fill any geometry with a 3d pattern using the pufferfish plugin.

In this grasshopper example file you can create a parametric pattern on a sphere based on the height of each face.

In this grasshopper example file you can create many different voxelized lattice structures by using the AxoloTL plugin.

In this grasshopper example file you can use the parakeet's genotype patterns on a sphere or any mesh to generate a 3d parametric pattern.

In this grasshopper example file you can model a series of rotating pyramids by using a polar grid and giving each row an increasing deformation vector.

In this grasshopper example file by defining a series of points you can create a pattern on a mesh based on the shortest path between two points.

In this grasshopper example file, you can stellate the faces of a mesh by using the colour of an image.

In this grasshopper example file you can model a parametric noise field and use the dendro plugin to voxelize it.

In this grasshopper example file, you can use kangaroo to simulate a differential growth on a mesh which will result in a maze-like pattern.

In this example file you can generate a parametric model using random hexagonal wall panels.

In this grasshopper example file you can model a parametric pattern on a hexagonal grid.

In this grasshopper example file you can model a series of curly strips by finding points on a cone.

In this grasshopper example file you can modify a mesh sphere edges by using the Parakeet plugin.

In this grasshopper example file you can model a parametric pattern by using a series of parakeet components.

In this grasshopper example file you can model a series of random parametric puzzle-like panels.

In this grasshopper example file we have used a stereographic projection combined with the dendro plugin to model a parametric 3d model.

In this grasshopper example file you can model a 3d hexagonal pattern by defining a point attractor.

In this grasshopper example file you can create a pattern on any NURBS surface by converting it to a super mesh.

In this grasshopper example file you can model a series of 3d diagonal panels from a sine function.

In this grasshopper definition you can create a smooth polar diagonal 3d pattern.

In this grasshopper definition, we have used two parametric circles to generate these circular diamonds. This definition is a good example to learn how to use Dispatch in grasshopper.

In this grasshopper definition by creating two triangular grids which intersect and connecting their centers you can model something similar to the Erwin Haure's pattern.

In this grasshopper definition inspired by Arturo Tedeschi, you can create random patterns by splitting a planar surface recursively with a series of rotating lines.

In this Grasshopper definition, you can model a wave-like ceiling pattern by hanging a series of panels from the roof. The point attractor will give the panels a wave look that you can control with a Graph Mapper.

In this grasshopper definition, you can use the Parakeet Plugin to cover a curved wall with a "Brick Type F" component and use the Weaverbird plugin to give it some thickness.

In this grasshopper definition, you can generate a parametric face mask by spliting parts of the face mesh and use pufferfish to give it a symmetric look. Finally, use mesh+ plugin to give it some borders.

In this grasshopper definition by using one of the parakeet's tiling you can generate a vault-like form by using Mesh+ plugin and also Weaverbird to thicken the form.

In this grasshopper exercise file, we have used a plugin to produce a wave-like mesh pattern and then use weaverbird to smooth the final result.

In this grasshopper definition by designing a force diagram instead of designing a form diagram of a bridge you can generate an optimized structure by using the 3D graphic static plugin.

In this grasshopper definition by modeling a series of circles and generating twisted curves around them you can model a random organic pattern. Finally you can use the Dendro plugin to voxelize the curves.

In this grasshopper definition by modeling two series of parametric curves and then using the Lunchbox plugin you can model a parametric truss.

In this grasshopper definition by using the "Net On Surface" component from Pufferfish Plugin you can create a series of interpolated curves on multiple connected surfaces and also use the Dendro plugin to give it some thickness.

In this grasshopper definition you can use one of the Parakeet's Plugin patterns. First we have transformed the pattern and then used the Millipede plugin to model a minimal surface between the two layers.

In this grasshopper definition by using the Parakeet's pattern genotype inside an hexagon, you can model a parametric pattern model.

In this grasshopper definition first we model an Icosahedron by Weaverbird and then generate wave pattern on it by using Mesh+ Plugin. Finally you can also make the mesh thicker and smoother.

In this grasshopper definition, you can create noise on any surface by using the Tundra plugin. For example we have used the Mobius surface component by Lunchbox plugin.

In this example file we want to show you how you can use the Dispatch Component to generate Different Patterns with controlling True & False. You can learn this process step by step.

In this grasshopper definition you can model a seamless hexagon pattern. By changing the scaling of the hexagons and the height and thickness of each layer you can control this parametric pattern.

In this grasshopper definition by creating a series of Twisted boxes on a surface and morphing an arc in them you can model a parametric radial pattern.

In this grasshopper definition by controlling the angle of rotation with a graph mapper you can find and create many different types of geometries.

In this grasshopper definition by creating a loop from the anemone plugin, you can create different geometries by changing the segments of the initial polygon or by changing the loop count.At the end you can subdivide the results for a smoother mesh.

In this grasshopper definition by using the PerlinNoise component of the Noise 4d plugin you can produce a changing value for a iso surface which is generated with Millipede.You can also subdivide the mesh surface to have a smoother result.

In this grasshopper definition you can model a parametric singular wavy tile model for covering walls. This 3d wall panel is based on a symmetric curve which you can control its tangents and depth.

In this grasshopper definition you can model a parametric creased surface by changing the scale of the base curve and also using different graphs in Graph mapper.

In this Grasshopper definition, you can use the "Morph to twisted box" from the Pufferfish plugin to morph a 3D module into a target Nurbs surface. You can also use the "Tween two colors" to give the final results a colorful look.

In this grasshopper definition by exploding a mesh sphere and by using the Pufferfish plugin you can extrude the faces towards their normals controlled by a sine wave.

In this grasshopper definition you can model a parametric sine wave surface and then use Paneling Tools to divide it into a grid and use a point attractor to deform the grid.

In this defintion you can model a parametric wave like structure and two waffle parts which can hold those sections together.

In this grasshopper definition you can create a geometry and morph it on a sphere. You can also join the meshes together. This definition is using these plugins : Pufferfish , Mesh + and Weaverbird.

In this definition you can model a parametric 3D wall pattern based on scaling edges of a rectangle grid and also moving the center of these edges.

In this Grasshopper Definition by using the Anemone plugin you can model a recursive pattern that connects each corner of the face to the center. You can also Mesh+ & Weaverbird to prepare a mesh or a Nurbs surface for the division process.

In this grasshopper definition we have used the Cocoon plugin to create a voxelized mesh with a set of custom curves and a series of parameters which can change the parametric shape.

In this grasshopper definition by extracting points from a curve and using the Curve CNR component you can create a chain of circles on a defined curve.

In this grasshopper definition by using the 3d Maurer rose formula and combining it with Dendro plugin you can create a parametric form. In geometry, the concept of a Maurer rose was introduced by Peter M. Maurer.

In this grasshopper definition you can generate a parametric surface with different truchet patterns. By using Jitter to change the index of the Twisted boxes you can model different patterns

In this grasshopper definition by offsetting and scaling one of the Parakeet's Tiling components (patterns) you can create different patterns. this grasshopper definition uses Parakeet and Weaverbird plugins.