By using the "Spatial Deform (Custom)" component you can deform a freeform surface. You have to define a space syntax of points and forces. First, give the moving points and related forces to the space syntax and then define some points which are fixed and have no movement.

In this definition, you can make a series of scaling arcs around a parametric circle. You can extract a part of the circle using subcurve and control the size of the arcs by changing the series inputs.

In this definition, we move the faces of a box in their normal direction, Scale and rotate them and connect them back to their original faces and finally smooth the shape with weaverbird Catmull-Clarck's subdivision.

In this exercise, you will learn how to use point attractors for scaling and moving a series of rectangles. First, we will define the attractors and then we will use a remap to move and scale them and finally Loft the results

In this exercise file, you can learn how to scale a series of boxes by using the range and graph mapper to produce a non-linear distribution.

In this Grasshopper Definition you can make a series of Dipyramids on a Mobius strip by using the Weaverbird and Parakeet Plugin.

In this Grasshopper definition you can generate conical pattern by defining a curve due to perpendicular lines that divide on the curve.

In this Grasshopper definition you can venate (Network of curve among points) on any geometry by using parakeet plugin and fattener component.

In this definition you can panelize any mesh (triangular subdivision) by Weaverbird plugin and moving panels due to one of triangle's side.

In this grasshopper definition you can change size of voronoi cell by changing attractor location.

In this grasshopper definition you can create field which is made by grid of points and thicken them by Variable sweep in Heteroptera plugin.

This definition creates a mesh model of all the connections between the centers of the 3D voronoi cells and the adjacent cells centers. This definition uses following plugins: Mesh Edit _Mesh Tools _Weaverbird

In this grasshopper definition you can generate contour of triangles which are perpendicular to base surface and height of each triangle follow's custom path (curve).

In this definition we will model a series of metaballs which we extrude at the end. We also can change the position of the points randomly.

In this grasshopper definition you can create a parametric folded plate structure.

In this definition you can use the Parakeet's "Knit" component which Generates a Knitted Pattern on a Surface. First you have to define the base surface (NURBS) and then you can define the number of divisions in the U,V direction , The height of the curves and the degree.

In this definition you can use the Mesh+ "Snubbed Antiprism" which can add an advanced effect on any faces of a mesh and it's called the antiprism extrusion. There are several options which you can change such as height of the cells or the offset from the center. You can also smooth the final result.

In this pufferfish plugin example you can use the Tween through Surface component to produce surfaces between multiple target surfaces and control their count and distribution.

In this grasshopper definition you can generate several parakeet patterns through panelized surfaces using lunchbox and parakeet plugin.

In this definition we have used the Pufferfish's "Recrusive Morph Mesh" to produce patterns on a mesh. This component Recursively morphs mesh geometries onto a base mesh.

In this grasshopper definition a weave pattern is constructed using a base circle which will produce a series of perpendicular circles around it.

In this grasshopper definition you can create a Truncated hexagonal grid and then add a pattern to it. You can rotate or scale the pattern with a point attractor and then finally offset the curves.

In this definition you can use the Pufferfish's plugin component called Retrans which Recursively transform geometry to get a self-referential step sequence of transformed geometry.

In this definition by using the Lunchbox spaceframe component and the Parakeet's Truncate tool we can make a recrusive 3d pattern. You can change the Truncation distance to make the pattern grow or shrink and by changing the Iteration you can define the number of loops.

In this Grasshopper definition by using the Kangaroo's Warp & Weft component we can control different tensile forces on the mesh and then by snapping the naked edge's point to a series of circles we can control the final tensile tunnel.

In this Parakeet Plugin Example you can use the Flow Path component to Generate a Fluid Flow Path on a Mesh.

In this grasshopper definition you are able to fill any closed brep through Populate-3d and Populate-Geometry components and connecting each point to the nearest points then thicken and weld the network that has been generated by using Weaverbird Plugin and Fatten component.

In this grasshopper definition a series of basic grasshopper components has been used to create a surface on top of a network of arcs and curves.

In this grasshopper definition by dividing a square grid and extracting relative points in the grid you can generate a parametric 3d pattern panel.

In this definition you can use the shortest walk plugin to produce a venation pattern between a series of random points.

In this grasshopper definition by generating a truncated cubic grid you can give volume to it by using Dendro's plugin voxel method. We have also used the Parakeet plugin to change the form.

In this grasshopper definition you can use the Jellum force (a force which affects a grid of points) and change the strength and position to produce a deformed 3d grid and finally voxelize the curves and points to produce a 3d parametric form.

In this grasshopper definition we have used the Rabbit Plugin to produce a parametric L-System by defining rules and number of agents (Turtles). The Starting position has been found on a sphere

In this grasshopper definition you can model a parametric shape by defining a series of circles with a Perlin noise function controlling the radiuses. At the end we will use the Dendro Plugin to voxelize the final shape.

In this grasshopper definition you can model a parametric form by cutting a series of curves with a plane and then joining them with the mirrored result.

In this grasshopper definition we have modeled two series of 3d patterns based on a square grid which can be controlled parametrically.

In this grasshopper definition you can use the point attractor technique combined with Heteroptera plugin to model a wavy like surface.

In this grasshopper definition you can learn how aggregation method works by creating a loop with the Anemone plugin. In each iteration, the faces of the meshes will generate a new face.

In this grasshopper definition by using a surface which is created from Loft and a single variable function which is controlled by Graph Mapper, you can generate a pattern that surrounded the surface thorough the function.

In this grasshopper definition by using an attractor point we will model a parametric twisting surface and then use Lunchbox or Pufferfish or Weaverbird to model a series of patterns on this base surface.

In this definition you can learn how to pinch or spread a mesh box with random points by using the Pufferfish Plugin + Weaverbird.

In this grasshopper definition we will model an Erwin Hauer pattern based on the "Still Facing Infinity" exhibition.

In this definition a set of gene pools are used to create the main surface and then data tree has been used to extract three sets of curves to create the pattern.

In this Grasshopper definition you can extrude and scale a series of squares based on a parametric point attractor. You can also control the height and scale by changing the graphs.

In this definition we will find the solid difference between a box and a series of spheres on the corners and the face centers. then we will morph the module into a Nurbs surface.

In this grasshopper definition we have used the Quelea plugin for agent base modeling. By changing the agents behaviour you can have different conceptual models.

In this definition we have used the Mesh+ Thatch weave command to produce a parametric weave pattern on an untrimmed Nurbs surface.

In this definition we will use some geometrical transformations to model a 3d wall panel. First we will model the rectangles and then we will turn them in to 3d.

In this definition we will use Perlin noise as the base deformation of a sphere. Perlin noise is a type of gradient noise developed by Ken Perlin in 1983.

In this definition you can use Mesh+ & Weaverbird plugin to smooth a parametric rotating tower and control the bumps.

In this grasshopper definition by offsetting and scaling one of the Parakeet's Tiling components (patterns) you can create different patterns. this grasshopper definition uses Parakeet and Weaverbird plugins.

In this grasshopper definition you can generate a parametric surface with different truchet patterns. By using Jitter to change the index of the Twisted boxes you can model different patterns

In this grasshopper definition by using the 3d Maurer rose formula and combining it with Dendro plugin you can create a parametric form. In geometry, the concept of a Maurer rose was introduced by Peter M. Maurer.

In this grasshopper definition by extracting points from a curve and using the Curve CNR component you can create a chain of circles on a defined curve.

In this grasshopper definition we have used the Cocoon plugin to create a voxelized mesh with a set of custom curves and a series of parameters which can change the parametric shape.

In this Grasshopper Definition by using the Anemone plugin you can model a recursive pattern that connects each corner of the face to the center. You can also Mesh+ & Weaverbird to prepare a mesh or a Nurbs surface for the division process.

In this definition you can model a parametric 3D wall pattern based on scaling edges of a rectangle grid and also moving the center of these edges.

In this grasshopper definition you can create a geometry and morph it on a sphere. You can also join the meshes together. This definition is using these plugins : Pufferfish , Mesh + and Weaverbird.

In this defintion you can model a parametric wave like structure and two waffle parts which can hold those sections together.

In this definition you can model a parametric surface which is basically controlled by a series of circles with different radiuses and locations. At the end you can have the sections for fabrication.