
The Airshell Prototype
This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.
Timber gridshell structures are an efficient way of covering large spaces, while it also has an extraordinary ability to capture architectural interest and exploit material properties. From an engineering point of view, the success of a project can be achieved through innovative design of form, that takes advantage of the unique structural load carrying capability of a gridshell. As gridshell design is to consider as an emergent technology, there is still a lot of potential in this research field.
The question for discussion is how digital workflow, based on a parametric model, can be used as a method of design to increase the efficiency of spatial structure design. This study by Helle Stam Faugstad and Øyvind Sunnvoll Rognes focuses on developing connections in timber gridshells.
With a flexible digital workflow, the user can automatically generate structurally valid gridshell connections according to the gridshell properties. Such a workflow enables more efficient communication between architects and engineers during the design process, by allowing optimization of the economic, structural and conceptual sides of a project.
The digital workflow was implemented in a case study to engineer a spatial cabin structure in Norway, and tested for different grid patterns and cross-sections. The case study involved cross-disciplinary work between two teams of engineers and one architect, increasing the realism of the research project.
The research led to a digital workflow based on a particular proposed gridshell connection design consisting of aluminum gusset plates, slotted in the glulam beams and attached to a center thin-walled aluminum cylinder. A parametric model, with parallel structural verification algorithms, was developed, and specific components were verified with further structural analysis.
The structural verification mimics the intuitive engineering approach of testing different configurations, from simple to complex, until a valid configuration is found. The gridshell connection design proposed in the thesis also shows how the timber failure modes are critical in traditional connections with slotted plates.
The digital workflow succeeded in generating and structurally validating custom gridshell connections. The results can be used when discussing the structural ability of different gridshell forms and beam sizes. The study finds clear advantages with a digital workflow, e.g., better communication between architects and engineers and better predictions regarding structural stability.
An on-hand parametric visualization of the structure facilitates for better understanding, easier troubleshooting and less redundant work. It also makes it easier to experiment with changes and communicate options across disciplines, due to a work culture built on common terms.
This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.
In this paper by Gregory Charles Quinn, Chris J K Williams, and Christoph Gengnagel, a detailed comparison is carried out between established as well as novel erection methods for strained grid shells by means of FE simulations and a 3D-scanned scaled physical model in order to evaluate key performance criteria such as bending stresses during erection and the distance between shell nodes and their spatial target geometry.
In this paper by Frederic Tayeb, Olivier Baverel, Jean-François Caron, Lionel du Peloux, ductility aspects of a light-weight composite gridshell are developed.
In this paper by Julian Lienhard, Holger Alpermann, Christoph Gengnagel and Jan Knippers structures that actively use bending as a self forming process are reviewed.
Parametric Tools for Architects & Designers @2025
No account yet?
Create an Account