Metaball(t) custom

In this video tutorial, I will explain how you can produce a metaball by a set of point and charges.

Duration : 13 Minutes

First of all, you can search for the tool by double-clicking on the canvas and searching “meta”. There will be three metaball tools and the easiest way to produce a metaball is “Metaball(t) custom”.

The metaball tool needs a set of points to start. You can use the “point” tool (params>point) and right click on it and choose multiple points or define the points in rhino and import them into Grasshopper 3d.

The Charge of the metaball should have the same number as the points. Remember that the value should be positive. (In the future I will start a video tutorial on great plugin in Grasshopper, which you can use negative charges also)

You can also use the Gene Pool tool (Params>Util) to easily produce several values for the Charge input. Just double-click it and adjust the settings.

If you change the point’s location you will notice that the metaball will change.

By default, metaball will slice the volume with an XY-plane. To see the rest of the form you can take an XY-plane (Vector>plane) and then linear array it in the Z direction.

By changing the “Factor” input of the Z vector you can define the height of the curves.

If you right-click on the XY-plane Origin and extract it you can also change the beginning elevation of the contour.

The Threshold input is a value between 0 and 1. If you increase the value, the metaballs will isolate and if you decrease it the spheres or the balls will fuse quicker.

If you give a number to the “Accuracy” input, the metaballs will be shown by an approximate polyline.

If you connect a surface (Params>geometry) to the output of the “metaball” tool you will notice that it will take time to show the surfaces. That is because the curves are polyline (to see the red panel underneath the tools go to the Display>Canvas widgets>Profiler)

To increase the metaball formation you can use 2 tools. First, you can smooth the polylines by the “smooth polyline” tool (Curve>util). Next, you need a “rebuild curve” to convert the polylines to NURBS curve.


If you connect the surface to the rebuild curve output you will see that the surface will actually be shown 200 times faster!!

You can extrude the surfaces with the same hight as the linear array’s distance. The resulting form has shown below.

In this video tutorial, I will explain how you can produce a metaball by a set of point and charges.

Paracourse Files

Reviews

There are no reviews yet.

Be the first to review “Metaball(t) custom”

Differential Growth

In this Kangaroo Grasshopper tutorial, you’ll learn how to create a differential growth pattern on any mesh surface by projecting

Parametric Vase

In this Grasshopper beginner tutorial, you’ll learn how to design a parametric vase with triangular faces, fully controllable height, thickness,

Connecting Towers

In this Grasshopper tutorial, you’ll learn how to design a series of parametric towers arranged around a curve and connect

Difference Contour

In this Grasshopper tutorial, you’ll learn how to design a parametric wall using solid difference and contour techniques.

Parametric Mesh

In this Grasshopper example file, you can model an exoskeleton Mesh structure with entwined curves parametrically.

Voronoi Multipipe

In this Rhino Grasshopper tutorial for beginners, you’ll learn how to model a parametric Voronoi MultiPipe SubD structure on a

Space Frame

In this Grasshopper tutorial, you’ll learn how to create a simple two-layer Vierendeel space frame structure by defining any four-sided

Voronoi Mesh

In this Grasshopper Voronoi tutorial, you’ll learn how to create a parametric mesh generated from random or controllable Voronoi cells

Inflated Mesh

In this Grasshopper tutorial, you’ll learn how to create a dynamic parametric mesh using section curves and Kangaroo physics to

Tensile Structure

In this Grasshopper Kangaroo tutorial, you’ll learn how to model a parametric tensile structure by defining anchor points, the direction

Tensile Structure

In this Grasshopper Kangaroo tutorial, you’ll learn how to model a series of tensile structures arrayed along any open or

Parametric Structure

In this Rhino Grasshopper tutorial, you’ll learn how to model a parametric tree-like structure using only native Grasshopper components, with

Bridge Tower

In this Grasshopper tutorial for beginners, you will learn how to design a parametric tower defined by four control points

Attractor Modules

In this Grasshopper tutorial for beginners, you will learn how to design a parametric facade composed of modular openings.

Frames on Curve

In this Grasshopper tutorial because we know how to convert a series of lines to a frame now we can

Brick Wall

In this Rhino Grasshopper Script, you can model a parametric brick wall by defining a base curve

3- Print + Loop

In this Grasshopper Python Lesson, we are going to talk more about the basics and how to use Print and

Rotating Lines

In this Rhino Grasshopper Tutorial we are going to learn how to make a series of rotating lines around two

6- Parametric Vase

In this Paracourse Lesson (25 Minutes), You can learn how to model a parametric vase by using a Perlin Noise

2- Manage output

In this Grasshopper lesson, I will talk about managing output data with a turning tower example. First I,m going to

Partition List

2-Canvas

In the introductory lesson, we’ll explore the Grasshopper 1.0 canvas and familiarize ourselves with its fundamental features.

Shortest List

3- Shortest List

Now we have learned the basics of the canvas we will take a look at the most important aspect of

Partition List

4- Partition List

Now we will learn how to manage data with more tools like list length , partition list and simplify.

After learning about the Partition list, it’s time to learn how to destroy the data trees with flatten and also change them with flip matrix.

6- Flatten

After learning about the Partition list, it’s time to learn how to destroy the data trees with flatten and also

Hexagonal Facade

In this Grasshopper example file, you can design a parametric facade with variable-thickness hexagonal cells.

Tensile Facade

In this Grasshopper example file, you can model and simulate a parametric facade with free-form openings using the mesh relaxation

Hexagonal Panels

In this grasshopper example file, you can use a hexagonal module to model a parametric facade.

3D Wave Pattern

In this grasshopper example file, you can use the morph components to apply a 3d wave pattern on a mesh.

Parametric Ideas 327

In these Grasshopper example files, you can design a parametric geodesic dome with customizable openings, generate optimized tower forms using

Parametric Ideas 326

In this Grasshopper example file, you can create relaxing Voronoi cells on a facade , a blobby form with a