Robotic Construction

Robotic Construction

This research by Steven Robert Janssen catalogues robotic construction technology currently being used by architects and discusses the motivations that drive architects to use this technology. This catalogue includes an interview with architect Dr Simon Weir and investigates his motivation for using robotic construction technologies.

Table of Contents

In the last 30 years, there has been increasing interest in the adoption of robotics in the construction industry and more recently in architecture. Cutting edge technologies are often pioneered in industries such as automotive, aeronautical and ship building, and take decades to filter into the hands of architects. If this is to change, architects need to be better educated in the field of robotic construction technology. This research by Steven Robert Janssen, catalogues robotic construction technology currently being used by architects and discusses the motivations that drive architects to use this technology. This catalogue includes an interview with architect Dr Simon Weir and investigates his motivation for using robotic construction technologies on a project for an Aboriginal community in central Australia.

Existing frameworks for classifying robotic construction technologies are reviewed and assessed for their suitability for use teaching architecture students about these technologies. This leads to the development of a new conceptual framework for teaching architecture students about robotic construction technology. This conceptual framework classifies the technology according to the role it plays in the construction process, which makes the information more accessible to architects. The developed conceptual framework is implemented by teaching a class of students from the Master of Architecture course at the University of Sydney. Results from this class reveal outcomes for further development of the implementation of the framework into the classroom. A revised course structure is presented along with an appropriate hybrid robotic system for teaching architecture students about robotic construction technology.

Leave a Reply

Related Post

The Airshell Prototype

This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.

Read More »

Strained Grid Shells

In this paper by Gregory Charles Quinn, Chris J K Williams, and Christoph Gengnagel, a detailed comparison is carried out between established as well as novel erection methods for strained grid shells by means of FE simulations and a 3D-scanned scaled physical model in order to evaluate key performance criteria such as bending stresses during erection and the distance between shell nodes and their spatial target geometry.

Read More »

Gridshell Structure

In this paper by Frederic Tayeb, Olivier Baverel, Jean-François Caron, Lionel du Peloux, ductility aspects of a light-weight composite gridshell are developed.

Read More »

Active Bending

In this paper by Julian Lienhard, Holger Alpermann, Christoph Gengnagel and Jan Knippers structures that actively use bending as a self forming process are reviewed.

Read More »