Robotic Fabrication Simulation

Robotic Fabrication

This thesis by Augusto Gandia, investigates computational design methods to tackle two of the most relevant challenges of robotically assembling spatial structures, which include the generation of collision-free robot paths and the handling of tolerance build-up.

Table of Contents

Robotic Fabrication Simulation
A Computational Method for the Design of Fabrication-aware Spatial Structures

Augusto Gandia
A Thesis Submitted to Attain the degree of Doctor of Sciences of ETH Zurich
2020

The development of computational design technologies and prefabrication systems have enabled the construction of bespoke long-span spatial structures. However, the construction of such structures still relies on wasteful milling processes for the production of custom parts and labor-intensive processes for their manual assembly.

Building upon prefabrication systems, several institutions investigated robotic processes for the automatic construction of bespoke spatial structures. However, the new challenges introduced by these complex processes have been only handled through inefficient and project-specific fabrication strategies that lead to constrained designs.

This thesis by Augusto Gandia, investigates computational design methods to tackle two of the most relevant challenges of robotically assembling spatial structures, which include the generation of collision-free robot paths and the handling of tolerance build-up. The two methods enable the computational rationalization of spatial structures, meaning that they allow verifying input designs on their buildability.

Such verification is pursued through two complementary strategies. The first strategy is computational post-rationalization and allows verifying a design after it is defined. The second strategy is computational co-rationalization and allows re-adjusting a design while verifying its buildability.

The ultimate goal of this thesis is to extend the range of spatial structures that can be robotically fabricated through efficient and less wasteful construction processes. An additional goal is to enable the computational rationalization of the structure ahead of the construction phase to explore a wider range of spatial structures.

The investigation complements the investigation of other research projects, by integrating the methods researched by this thesis within the design workflow of these projects. This integration allows validating the methods through the computational rationalization of large-scale spatial structures and their realization in the Robotic Fabrication Laboratory at ETH Zurich.

Leave a Reply

Related Post

The Airshell Prototype

This paper by Alessandro Liuti, Sofia Colabella, and Alberto Pugnale, presents the construction of Airshell, a small timber gridshell prototype erected by employing a pneumatic formwork.

Read More »

Strained Grid Shells

In this paper by Gregory Charles Quinn, Chris J K Williams, and Christoph Gengnagel, a detailed comparison is carried out between established as well as novel erection methods for strained grid shells by means of FE simulations and a 3D-scanned scaled physical model in order to evaluate key performance criteria such as bending stresses during erection and the distance between shell nodes and their spatial target geometry.

Read More »

Gridshell Structure

In this paper by Frederic Tayeb, Olivier Baverel, Jean-François Caron, Lionel du Peloux, ductility aspects of a light-weight composite gridshell are developed.

Read More »

Active Bending

In this paper by Julian Lienhard, Holger Alpermann, Christoph Gengnagel and Jan Knippers structures that actively use bending as a self forming process are reviewed.

Read More »